\(\int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx\) [296]

   Optimal result
   Rubi [A] (warning: unable to verify)
   Mathematica [F]
   Maple [F]
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 384 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx=\frac {3 C \tan (c+d x)}{2 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 \sqrt {2} A \operatorname {AppellF1}\left (\frac {1}{6},\frac {1}{2},1,\frac {7}{6},\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}+\frac {3^{3/4} C \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{2 \sqrt [3]{2} d (1-\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}} \]

[Out]

3/2*C*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/3)+3*A*AppellF1(1/6,1,1/2,7/6,1+sec(d*x+c),1/2+1/2*sec(d*x+c))*2^(1/2)*
tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/3)/(1-sec(d*x+c))^(1/2)+1/4*3^(3/4)*C*((2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/
2)))^2/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))*(2^(1/3)
-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))*EllipticF((1-(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec(d
*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(2^(1/3)-(1+sec(d*x+c))^(1/3))*((2^(2/3)+2^(1/3)*(
1+sec(d*x+c))^(1/3)+(1+sec(d*x+c))^(2/3))/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)*tan(d*x+c)*2^(2/
3)/d/(1-sec(d*x+c))/(a+a*sec(d*x+c))^(1/3)/(-(1+sec(d*x+c))^(1/3)*(2^(1/3)-(1+sec(d*x+c))^(1/3))/(2^(1/3)-(1+s
ec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)

Rubi [A] (warning: unable to verify)

Time = 0.65 (sec) , antiderivative size = 384, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {4140, 4009, 3864, 3863, 141, 3913, 3912, 65, 231} \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx=\frac {3 \sqrt {2} A \tan (c+d x) \operatorname {AppellF1}\left (\frac {1}{6},\frac {1}{2},1,\frac {7}{6},\frac {1}{2} (\sec (c+d x)+1),\sec (c+d x)+1\right )}{d \sqrt {1-\sec (c+d x)} \sqrt [3]{a \sec (c+d x)+a}}+\frac {3^{3/4} C \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt {\frac {(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{2 \sqrt [3]{2} d (1-\sec (c+d x)) \sqrt {-\frac {\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \sqrt [3]{a \sec (c+d x)+a}}+\frac {3 C \tan (c+d x)}{2 d \sqrt [3]{a \sec (c+d x)+a}} \]

[In]

Int[(A + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^(1/3),x]

[Out]

(3*C*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(1/3)) + (3*Sqrt[2]*A*AppellF1[1/6, 1/2, 1, 7/6, (1 + Sec[c + d*x
])/2, 1 + Sec[c + d*x]]*Tan[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*(a + a*Sec[c + d*x])^(1/3)) + (3^(3/4)*C*Ellip
ticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x])^(1/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/
3))], (2 + Sqrt[3])/4]*(2^(1/3) - (1 + Sec[c + d*x])^(1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) +
 (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(2*2^(1/3)*d*(1
 - Sec[c + d*x])*(a + a*Sec[c + d*x])^(1/3)*Sqrt[-(((1 + Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/
3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2)])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 141

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(b*e - a*f
)^p*((a + b*x)^(m + 1)/(b^(p + 1)*(m + 1)*(b/(b*c - a*d))^n))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(
b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] && IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !(GtQ[d/(d*a - c*b), 0] && SimplerQ[c + d*x, a + b*x])

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 3863

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^n*(Cot[c + d*x]/(d*Sqrt[1 + Csc[c + d*x]]
*Sqrt[1 - Csc[c + d*x]])), Subst[Int[(1 + b*(x/a))^(n - 1/2)/(x*Sqrt[1 - b*(x/a)]), x], x, Csc[c + d*x]], x] /
; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] && GtQ[a, 0]

Rule 3864

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^IntPart[n]*((a + b*Csc[c + d*x])^FracPart
[n]/(1 + (b/a)*Csc[c + d*x])^FracPart[n]), Int[(1 + (b/a)*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, n}, x]
 && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] &&  !GtQ[a, 0]

Rule 3912

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^2*d
*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])), Subst[Int[(d*x)^(n - 1)*((a + b*x)^(m -
 1/2)/Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 3913

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Csc[e + f*x])^FracPart[m]/(1 + (b/a)*Csc[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Csc[e + f*x])^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 4009

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[c, I
nt[(a + b*Csc[e + f*x])^m, x], x] + Dist[d, Int[(a + b*Csc[e + f*x])^m*Csc[e + f*x], x], x] /; FreeQ[{a, b, c,
 d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[2*m]

Rule 4140

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[
(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(b*(m + 1)), Int[(a + b*Csc[e + f*x])^m*Si
mp[A*b*(m + 1) + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !L
tQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = \frac {3 C \tan (c+d x)}{2 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 \int \frac {\frac {2 a A}{3}-\frac {1}{3} a C \sec (c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx}{2 a} \\ & = \frac {3 C \tan (c+d x)}{2 d \sqrt [3]{a+a \sec (c+d x)}}+A \int \frac {1}{\sqrt [3]{a+a \sec (c+d x)}} \, dx-\frac {1}{2} C \int \frac {\sec (c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx \\ & = \frac {3 C \tan (c+d x)}{2 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {\left (A \sqrt [3]{1+\sec (c+d x)}\right ) \int \frac {1}{\sqrt [3]{1+\sec (c+d x)}} \, dx}{\sqrt [3]{a+a \sec (c+d x)}}-\frac {\left (C \sqrt [3]{1+\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt [3]{1+\sec (c+d x)}} \, dx}{2 \sqrt [3]{a+a \sec (c+d x)}} \\ & = \frac {3 C \tan (c+d x)}{2 d \sqrt [3]{a+a \sec (c+d x)}}-\frac {(A \tan (c+d x)) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} x (1+x)^{5/6}} \, dx,x,\sec (c+d x)\right )}{d \sqrt {1-\sec (c+d x)} \sqrt [6]{1+\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}+\frac {(C \tan (c+d x)) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} (1+x)^{5/6}} \, dx,x,\sec (c+d x)\right )}{2 d \sqrt {1-\sec (c+d x)} \sqrt [6]{1+\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}} \\ & = \frac {3 C \tan (c+d x)}{2 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 \sqrt {2} A \operatorname {AppellF1}\left (\frac {1}{6},\frac {1}{2},1,\frac {7}{6},\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}+\frac {(3 C \tan (c+d x)) \text {Subst}\left (\int \frac {1}{\sqrt {2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{d \sqrt {1-\sec (c+d x)} \sqrt [6]{1+\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}} \\ & = \frac {3 C \tan (c+d x)}{2 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 \sqrt {2} A \operatorname {AppellF1}\left (\frac {1}{6},\frac {1}{2},1,\frac {7}{6},\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}+\frac {3^{3/4} C \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{2 \sqrt [3]{2} d (1-\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}} \\ \end{align*}

Mathematica [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx=\int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx \]

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^(1/3),x]

[Out]

Integrate[(A + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^(1/3), x]

Maple [F]

\[\int \frac {A +C \sec \left (d x +c \right )^{2}}{\left (a +a \sec \left (d x +c \right )\right )^{\frac {1}{3}}}d x\]

[In]

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/3),x)

[Out]

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/3),x)

Fricas [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt [3]{a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/3),x)

[Out]

Integral((A + C*sec(c + d*x)**2)/(a*(sec(c + d*x) + 1))**(1/3), x)

Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {1}{3}}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(a*sec(d*x + c) + a)^(1/3), x)

Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {1}{3}}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(a*sec(d*x + c) + a)^(1/3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{1/3}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(1/3),x)

[Out]

int((A + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(1/3), x)